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Abstract 

 
Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based 
image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated 
environments: the perturbation noises of the robot system, error of noise statistics, and slow 
convergence. To solve these three problems, we use an IBVS based on KF, African vultures 
optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic 
(FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-
ELM error compensation model to compensate for the sub-optimal estimation of the KF to 
solve the problems of disturbance noises and noise statistics error. Next, an FL controller is 
designed for gain adaptation. This approach addresses the problem of the slow convergence 
of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL 
and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF 
robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve 
the three problems mentioned above without camera parameters, robot kinematics model, and 
target depth information. We also compared the proposed method with other KF-based IBVS 
methods under different disturbance noise environments. And the proposed method achieves 
the best results under the three evaluation metrics. 
 
 
Keywords: Extreme learning machine, fuzzy logic, image-based visual servoing, Kalman 
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1. Introduction 

With the advance in industrial automation, the demand for robots in production and life is 
increasing, which promotes the development of the robot industry. Industrial robots liberate 
the labor force from dangerous and repetitive production. Service robots are constantly 
changing the way people live. With the improvement of hardware performance, robot 
performance has been dramatically improved, and the application scenarios of robots are richer. 
Industrial robots are the most important part of the traditional robot market. In assembly, 
handling, welding, and other repetitive boring labor, industrial robots are replacing human 
beings in a large area. With the acceleration of population aging, the research on service robots 
is more and more valued by many robot research and development companies. Robots play an 
important role in all industries, such as sorting and handling robots in the logistics industry; 
Underwater robots for deep-sea exploration. 

In the field of robot vision, the research of robot arm visual servo systems has a wide range 
of application scenarios. The vision servo of the manipulator is to study the cooperative control 
method between the end-effector and vision device. The realization of manipulator visual 
servo system mainly includes system modeling and model identification [1-3]. Estimation by 
image Jacobian matrix is a common strategy for visual servo. The image Jacobian matrix 
correlates the robot's visual features with its pose changes. According to the change of visual 
features, the change of the pose of the manipulator can be obtained, so as to control the 
movement of the manipulator to the desired position in real-time. Robot manipulator IBVS is 
a real-time control system, which mainly includes target image acquisition, image processing, 
target feature extraction, image Jacobian matrix estimation, feedback control quantity 
calculation, and motion control. Considering the real-time requirements of the system, these 
processing procedures must be completed within a specific time. To ensure real-time 
performance, reduce computing time and optimize system response speed, the image Jacobian 
matrix estimation method should be simple. 

To realize the conversion between pixel coordinates and actual coordinates in common 
robot visual servoing, calibration must be performed first. For the realization of visual servo 
control, the calibration here includes not only the camera calibration but also the hand-eye 
calibration of the robot system [4]. Because the visual servo calibration needs a lot of accurate 
prior information, the robustness of the system is poor. So, uncalibrated visual servoing is used 
in [5]. Uncalibrated visual servoing refers to a control method that uses images to calibrate the 
model and parameters directly by studying the control law of the driving robot motion in 
advance or under the condition of the robot kinematic model and system error so that the 
system converges to the allowable error. In this field, uncalibrated visual servo saves the 
tedious calibration process and has great advantages in control efficiency, application 
convenience, and performance. However, there are three problems in uncalibrated 
environments: the perturbation noises of the robot system, error of noise statistics, and slow 
convergence. So, in this paper, we study the image Jacobian matrix problem in uncalibrated 
visual servoing. A novel IBVS strategy, which associates KF with AVOA-ELM and FL 
techniques, is presented, and it does not need camera calibration or depth information of the 
target. Unlike the classical IBVS scheme, the IBVS method we proposed does not require 
camera parameters and robot inverse kinematics-related parameters. In addition, the proposed 
online Jacobian matrix estimation of IBVS can be used without the depth information of the 
target. The main contributions of this article are as follows: 
(1) The KF algorithm provides the optimal minimum variance estimation when the initial state 
or initial state error and all system noises satisfy the Gaussian assumption. However, in 
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practice, the robot system exhibits a non-Gaussian disturbance error, and the noise statistical 
error is unknown. Therefore, a very fast learning algorithm called AVOA-ELM is trained for 
Jacobian online estimation. 
(2) The convergence rate of the KF-based IBVS is slow. To address this problem, we use an 
FL unit based on experience to estimate the optimal control rate for the velocity controller in 
a loop. We take the norm of the image feature error, the norm of the derivative of the 
characteristic error, and the norm of the joint angle as the input of the FL controller. By 
applying the FL unit of the adaptive control rate, the cost time of the visual servo control is 
reduced, and the convergence time of the image characteristic error is accelerated. 

The rest of this article is as follows: Section 2 introduces the research of visual servo. 
Section 3 introduces the model of using the KF algorithm to estimate the Jacobian matrix of 
the image. We propose a method to estimate the Jacobian matrix of the image online using the 
KF-AVOA-ELM state estimator in Section 4. Section 5 introduces the IBVS system based on 
the proposed visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-
ELM). The simulation results are given in section 6 and the conclusion is given in section 7. 

2. Related work 
According to the type of visual feedback information [6-10], the visual servo divides into 
position-based visual servoing (PBVS), image-based visual servoing (IBVS) [11], and hybrid-
based visual servoing (HBVS). Another classification is based on the location of the camera. 
According to the camera's position relative to the manipulator [12], the visual servo classifies 
into the eye-to-hand (ETH) model and the eye-in-hand (EIH) model. 

2.1 Position-based visual servoing  
The PBVS is applied to many robot models with global cameras. In the entire control process, 
the 3D pose is estimated from camera images. Here, we note that the problem of pose 
estimation can be converted into a state estimation problem. In [13], a real-time PBVS control 
algorithm was proposed for an EIH model. The initial state of the extended Kalman filter (EKF) 
corresponded to the initial pose of the end effector, which was obtained by photogrammetry. 
The optical flow algorithm was used to track the target, which not only reduces the joint motion 
delay but also improves the real-time attitude and velocity estimation of the non-cooperative 
target. The defects of this algorithm were the EKF requirement to acquire the statistical 
characteristics of the noise and the need for a sufficiently high sampling frequency. For 
uncalibrated hand-eye systems, the PBVS is sensitive to the depth information of the target 
and the accuracy of camera calibration. These defects can lead to image features being left out 
of the field-of-view (FOV) of the camera along with target tracking failure. Yaozhen He et al. 
[14] proposed a deep learning-based visual servoing method. They made the original baseline 
obtain better pose prediction by using a kind of new training strategy. However, their proposed 
method does not perform well in practical scenarios due to the tendency of the model to overfit. 

2.2 Image-based visual servoing 
The IBVS uses image information as a control signal for the objective function without 3D 
reconstruction. The IBVS control signal is not dependent on the camera and robot system 
parameters, which makes it more robust to camera errors and more suitable for uncalibrated 
visual servoing. An IBVS control algorithm usually depends on the robot system and camera 
parameters. The calibration accuracy is very important for the IBVS system [15]. However, 
the calibration is very complex and costly. So, we need an IBVS control algorithm without 
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parameters calibration. In this regard, in [16], a stable adaptive visual servo scheme is proposed. 
This method combines motion control and visual servo based on the SDU decomposition 
method to solve the problem of inadequate calibration of camera robot system parameters. 
However, the method based on kinetic motion needs a high sampling frequency and has 
complex real-time requirements for calculating the force and torque, which results in high 
computational complexity. Meanwhile, Wang et al. [17] put forward an IBVS system with 
dual cameras. Here, the web camera was based on the EIH model and used for target tracking. 
Simultaneously, the object depth information is acquired by binocular vision in real time. 
Further, the adaptive gain of visual servoing, which is based on image error feedback, was 
used to improve the velocity of the controller. However, the system is required to process two 
images in a cycle, which results in poor real-time processing performance.  

To realize a satisfactory IBVS system, a mapping model needs to be established between 
the image feature space and the robotic arm space. At present, the image Jacobian matrix 
model is widely used for this purpose. For uncalibrated hand-eye control tasks, the image 
Jacobian matrix varies according to image characteristics, and it is difficult to obtain the actual 
Jacobian matrix. Hence, the determination of a valid method for online estimation of the matrix 
becomes necessary. Analytic and numerical methods form the main methods for image 
Jacobian matrix estimation. The analytic method depends on the camera and robot models, 
and it is very sensitive to camera error and manipulator model error. The method also has high 
computational complexity. On the other hand, the numerical method estimates the image 
Jacobian matrix as a whole via the use of state estimation algorithms such as the Kalman filter 
(KF) and particle-filter algorithms. In recent years, Tolga Yüksel [18] proposed an IBVS using 
an ELM and fuzzy logic. First, the method uses a trained ELM to avoid the singularity of the 
interaction matrix. Second, the method also uses a smooth adaptive gain based on control rate 
and fuzzy logic to improve the convergence speed of IBVS. Finally, the method uses the FL 
unit to keep the field of view (FOV). Qian et al. [19] proposed to use the Kalman-Bucy filter 
(KBF) to predict the Jacobian matrix of images, wherein the image Jacobian matrix is 
transformed into the state matrix of the KBF. However, However, this method does not 
perform well in the environment with unknown non-Gaussian noise. In order to improve 
system adaptability for noises, a newly proposed KF method uses fuzzy logic (FL) to adjust 
the co-variance matrices Q and R [20]. This method improves the estimation accuracy. The 
drawbacks of this method include the difficulty in determining the increment in the filter 
parameters and its unsuitability for dynamic unknown environments; further, the controller 
has no unified design standard, which increases the difficulty of practical application. 
Meanwhile, certain studies have estimated the image Jacobian matrix using intelligent 
algorithms. In [21], the Kalman filter put forward to improve the stability of the algorithm 
against noise perturbation. However, the convergence of the method was very slow, and the 
trajectory of the end effector was not sufficiently smooth. H. A. Junaid designed a four-layer 
artificial neural network for training between the image feature space and manipulator motion 
space [22], which reduced the IBVS system's calculation time. However, the disadvantage of 
this method was that the neural network needed to reacquire the training samples and train for 
different robot models. The approach trades training time with prediction time, and the neural 
network also has the problem of under-fitting and over-fitting. Miljković et al. [23] proposed 
to use reinforcement learning Q-learning and SARSA algorithms to train the mapping model 
between the image feature space and the robot motion space. However, the velocities had 
obvious oscillations. Maxwell Hwang et al. [24] reduces the computational complexity of 
image matrix pseudo-inverse and improves the efficiency of IBVS. At the same time, this 
method also reduces the impact on system noise and improves the stability of IBVS. 
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2.3 Hybrid-based visual servoing 
As the name implies, hybrid-based visual servoing is a kind of visual servo that combines 
IBVS and PBVS. This method usually performs a preliminary alignment through a position-
based method, followed by a precise approximation through an image-based method. However, 
there is an important problem for HBVS to solve the homography matrix, which is too 
complicated. Oualid Araar et al. [25] proposed an HBVS for the translational kinematics of a 
Vertical Takeoff and landing (VTOL) vehicle. It combines the robustness of IBVS with the 
global stability of PBVS and decides which strategy to use by switching. Gossaye Mekonnen 
et al. [26] put forward a novel hybrid control method for the visual servoing of mobile robots. 
Among them, the position-based method is used to achieve global routing, and the image-
based method is used to achieve precise navigation. 

3. Kalman estimation model for image Jacobian 
The image feature error is defined as follows: 

 𝑒𝑒𝑆𝑆(𝑡𝑡) = 𝑆𝑆(𝑝𝑝𝑖𝑖(𝑡𝑡),𝑎𝑎) − 𝑆𝑆∗ (1) 
where  𝑆𝑆(𝑝𝑝𝑖𝑖(𝑡𝑡),𝑎𝑎) and 𝑆𝑆∗ represent the current image feature and the expected image feature, 
respectively. The parameter 𝑝𝑝𝑖𝑖(𝑡𝑡)  represents the coordinates of n feature points and 𝑎𝑎 
represents a parameter set that obtains the intrinsic parameters of the camera (such as focus 
and pixel size). 

In IBVS, the relationship between image features and camera velocity is expressed as 
follows: 

 �̇�𝑆 = 𝐿𝐿𝑆𝑆�̇�𝜉 (2) 
where 𝐿𝐿𝑆𝑆 ∈ ℜ𝑛𝑛×6 denotes the interaction matrix of 𝑆𝑆, �̇�𝑆 is the time derivative of the features, 
and  �̇�𝜉 is the velocity of the camera. Subsequently, we have 

 �̇�𝑒𝑆𝑆(𝑡𝑡) = 𝐿𝐿𝑒𝑒�̇�𝜉 (3) 
where 𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑆𝑆. Let us design a velocity controller for the IBVS system and attempt to decrease 
the error by exponential decay, i.e., �̇�𝑒 = −𝜆𝜆𝑒𝑒. We then have 

 �̇�𝜉 = −𝜆𝜆𝐿𝐿𝑒𝑒
†𝑒𝑒𝑆𝑆(𝑡𝑡)  (4) 

Here, 𝐿𝐿𝑒𝑒
† ∈ ℜ6×𝑘𝑘 denotes the Moore–Penrose pseudo-inverse matrix of 𝐿𝐿𝑒𝑒. 

In fact, the depth information of features is difficult to estimate. Since the actual value of  
𝐿𝐿𝑒𝑒 or 𝐿𝐿𝑒𝑒

†  depends on the depth of the feature. So, we can't get them. Thus, we need to obtain 
an approximation 𝐿𝐿�𝑒𝑒

† , and the velocity controller consequently becomes 
 �̇�𝜉 = −𝜆𝜆𝐿𝐿�𝑒𝑒

†𝑒𝑒𝑆𝑆(𝑡𝑡) = −𝜆𝜆𝐿𝐿�𝑒𝑒
†(𝑆𝑆 − 𝑆𝑆∗)   (5) 

Define the joint angle vector of the m degrees of freedom (DOFs) manipulator as 𝑞𝑞 =
[𝑞𝑞1,⋯ , 𝑞𝑞𝑚𝑚]𝑇𝑇, then the joint velocity vector is �̇�𝑞 = [�̇�𝑞1,⋯ , �̇�𝑞𝑚𝑚]𝑇𝑇. The relationship between the 
joint velocity of the manipulator and the end-effector velocity is  

 �̇�𝜉 = 𝐽𝐽(𝑞𝑞)�̇�𝑞     (6) 
where 𝐽𝐽(𝑞𝑞) denotes the robot Jacobian matrix. The relationship between the image feature 
error rate of change and the angular velocity of the robotic arm joint is 

 �̇�𝑆 = 𝐽𝐽𝑞𝑞 ⋅ �̇�𝑞     (7) 
where 𝐽𝐽𝑞𝑞 = 𝐿𝐿𝑒𝑒 ⋅ 𝐽𝐽(𝑞𝑞) denotes the image Jacobian matrix. Consequently, the joint velocity 
controller according to Eqs. (5), (6), and (7) is defined as 

   �̇�𝑞 = −𝜆𝜆𝐽𝐽𝑞𝑞
†𝑒𝑒𝑆𝑆(𝑡𝑡)   (8) 

where 𝐽𝐽𝑞𝑞
† represents the Moore–Penrose pseudo inverse matrix of 𝐽𝐽𝑞𝑞.  
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In order to address the problems of classical IBVS, Qian et al. [19] established the KF model 
to estimate  𝐽𝐽𝑞𝑞  in Eq. (7), 𝐽𝐽𝑞𝑞 ∈ ℜ𝑛𝑛×𝑚𝑚 is described as 

   𝐽𝐽𝑞𝑞(𝑞𝑞) = �𝜕𝜕𝑆𝑆
𝜕𝜕𝑞𝑞
� =

⎣
⎢
⎢
⎡
𝜕𝜕𝑆𝑆1(𝑞𝑞)
𝜕𝜕𝑞𝑞1

⋯ 𝜕𝜕𝑆𝑆1(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕𝑆𝑆𝑛𝑛(𝑞𝑞)
𝜕𝜕𝑞𝑞1

⋯ 𝜕𝜕𝑆𝑆𝑛𝑛(𝑞𝑞)
𝜕𝜕𝑞𝑞𝑚𝑚 ⎦

⎥
⎥
⎤

𝑛𝑛×𝑚𝑚

= �
𝑗𝑗11 ⋯ 𝑗𝑗1𝑚𝑚
⋮ ⋱ ⋮
𝑗𝑗𝑛𝑛1 ⋯ 𝑗𝑗𝑛𝑛𝑚𝑚

�
𝑛𝑛×𝑚𝑚

 (9) 

The estimation problem of the image Jacobian matrix is a very important problem in IBVS. 
KF is the best linear state estimation algorithm with independent Gaussian white noises [26,27]. 
The image Jacobian matrix estimation problem can be transformed into the KF state estimation 
problem. The state and observation models, respectively, are given as 

 𝑋𝑋𝑡𝑡+1/𝑡𝑡 = 𝐸𝐸𝑋𝑋𝑡𝑡/𝑡𝑡 + 𝑊𝑊𝑡𝑡 (10) 
 𝑍𝑍𝑡𝑡+1 = 𝐻𝐻𝑡𝑡+1𝑋𝑋𝑡𝑡+1/𝑡𝑡 + 𝑉𝑉𝑡𝑡+1   (11) 

where 𝑊𝑊𝑡𝑡 ∈ ℜ𝑛𝑛𝑚𝑚, 𝑉𝑉𝑡𝑡 ∈ ℜ𝑛𝑛denote process noises and observation noises (which have zero 
mean) and whose co-variances are 𝑄𝑄(𝑡𝑡) and 𝑅𝑅(𝑡𝑡), respectively. Q(t) is an n × m dimensional 
matrix, and R(t) is an m-dimensional matrix. 𝑋𝑋𝑡𝑡/𝑡𝑡 is the state vector of the robot and is formed 
by concatenations of the row vectors of 𝐿𝐿𝑠𝑠. 

 𝑋𝑋𝑡𝑡/𝑡𝑡 = [𝑗𝑗11, 𝑗𝑗12, . . . 𝑗𝑗𝑛𝑛𝑚𝑚](𝑛𝑛∗𝑚𝑚)×1
𝑇𝑇   (12) 

In Eq. (11), 𝑍𝑍𝑡𝑡+1 ∈ ℜ𝑛𝑛 denotes the observation vector at the current instant. 
 𝑍𝑍𝑡𝑡+1 = 𝑆𝑆𝑡𝑡+1 − 𝑆𝑆𝑡𝑡 = 𝐽𝐽𝑞𝑞 ⋅ �̇�𝑞(𝑡𝑡)   (13) 

Thus, the observation matrix 𝐻𝐻𝑡𝑡+1 is defined as 

 𝐻𝐻𝑡𝑡+1 = �
�̇�𝑞(𝑡𝑡)𝑇𝑇 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ �̇�𝑞(𝑡𝑡)𝑇𝑇

�

𝑛𝑛×(𝑛𝑛∗𝑚𝑚)

  (14) 

According to Eqs. (10) and (11), we set up the following recursive expressions: 
1. Prediction step: 

 �
𝑋𝑋𝑡𝑡+1/𝑡𝑡 = 𝐸𝐸𝑋𝑋𝑡𝑡/𝑡𝑡

𝑃𝑃𝑡𝑡+1/𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡/𝑡𝑡𝐻𝐻𝑡𝑡 + 𝑄𝑄𝑡𝑡
   (15) 

2. Update step: 

 
𝐾𝐾𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1/𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 (𝐻𝐻𝑡𝑡+1𝑃𝑃𝑡𝑡+1/𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1)−1

𝑋𝑋𝑡𝑡+1/𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1/𝑡𝑡 + 𝐾𝐾𝑡𝑡+1(𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1𝑋𝑋𝑡𝑡+1/𝑡𝑡)
𝑃𝑃𝑡𝑡+1/𝑡𝑡+1 = (𝐸𝐸 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1/𝑡𝑡

 (16) 

where, the first line of the update step is used to calculate Kalman gain, and 
(𝐻𝐻𝑡𝑡+1𝑃𝑃𝑡𝑡+1/𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1)−1  represents the uncertainty of observation when the state is 
observed. The second line of the update step is used to update the state based on the observed 
information, and in the third line, the update step is used to calculate the variance matrix of 
the updated state. As can be observed from the prediction and update steps, the use of the KF 
method to predict the Jacobian matrix of an image has obvious defects. When the noise is 
Gaussian white noise, the KF algorithm provides an optimal estimate. However, in actual 
environments, the KF algorithm is sensitive to the statistical characteristics of noises generated 
during robot motion and introduced by the visual sensor. Therefore, in the next section, we 
will use the KF-AVOA-ELM method to estimate the image Jacobian matrix. 
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4. KF with AVOA-ELM for dynamic Jacobian estimation 

4.1 Extreme Learning Machine 
ELM [29,30] random choices input weights and bias, and then regulates the output weights 
with regularization to avoid the problem of multiple iterations during training, speeding up the 
learning speed of the network while still being able to approach any continuous system. The 
output function of ELM is [31] 

 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑥𝑥) = ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑥𝑥) =𝐸𝐸
𝑖𝑖=1 ℎ(𝑤𝑤, 𝑏𝑏, 𝑥𝑥)𝛽𝛽  (17) 

where 𝛽𝛽 = [𝛽𝛽1, . . . ,𝛽𝛽𝐸𝐸]𝑇𝑇 represents the hidden-layer weight vector. Further, ℎ(𝑤𝑤, 𝑏𝑏, 𝑥𝑥) =
[ℎ1(𝑤𝑤1,𝑏𝑏1,𝑥𝑥), . . . ,ℎ𝐸𝐸(𝑤𝑤𝐸𝐸,𝑏𝑏𝐸𝐸,𝑥𝑥)] denotes the relationship function between the hidden-layer 
input and output. Minimize the training error and minimize the modulus of the output weight 
vector as follows: 

 ∥ 𝐻𝐻(𝑤𝑤, 𝑏𝑏, 𝑥𝑥)�̂�𝛽 − 𝑇𝑇 ∥= 𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽

(∥ 𝐻𝐻(𝑤𝑤, 𝑏𝑏, 𝑥𝑥)𝛽𝛽 − 𝑇𝑇)    (18) 

 ��̂�𝛽� = 𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽
‖𝛽𝛽‖    (19) 

Here, �̂�𝛽 = 𝐻𝐻†𝑇𝑇 denotes the solution of 𝐻𝐻𝛽𝛽 = 𝑇𝑇 determined via a least-squares method and 𝐻𝐻† 
is the Moore–Penrose generalized inverse matrix of 𝐻𝐻 [32]. The ELM also has existing input 
layer weights 𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖1, . . .𝑤𝑤𝑖𝑖𝐸𝐸] ∈ ℜ𝐸𝐸, ∀𝑚𝑚 ∈ {1, . . . ,𝑚𝑚}, and the bias is b.  

4.2 African Vultures Optimization Algorithm 
The AVOA [33] is divided into the following stages: (1) Determine the best vulture in any 
group, this stage selects the best solution for each group of vultures. (2) Calculate the hunger 
rate of vultures, and judge whether the algorithm is in the exploration stage or the development 
stage based on the hunger rate. (3) Simulate the exploratory movement of vultures looking for 
food. (4) Different development strategies are selected according to different parameters. 
There is a complete description in the literature [33]. 

4.3 African Vultures Optimization Algorithm - Extreme Learning Machine 
Due to the input weight and bias of ELM are randomly selected, they cannot give full play to 
the best advantages of ELM. On this basis, we propose to use the AVOA algorithm to optimize 
the two parameters of ELM. In the AVOA algorithm, the prediction accuracy of ELM (we use 
RMSE) is used as the fitness of AVOA, and the best output of AVOA is used as the input 
weight and bias of the ELM algorithm. The performance of the AVOA algorithm has been 
proved in the literature [33] by the researcher who proposed, that the computational 
complexity and running time of the AVOA algorithm are superior to most meta-heuristic 
algorithms. In addition, the prediction accuracy of the AOVA algorithm also shows better 
performance. Therefore, we use the AVOA algorithm to find the optimal input weight and bias 
for ELM, which can greatly improve the prediction accuracy of ELM algorithm. We will 
compare the prediction performance of the AVOA-ELM algorithm in the experimental part. 
The flowchart of the AVOA-ELM algorithm is shown in Fig. 1. 

4.4 KF-AVOA-ELM Algorithm 
This section puts forward to online estimation of image Jacobian matrix using KF-AVOA-
ELM. The original KF algorithm provides an optimal state estimate for a linear time-invariant 
system when the noise is known to be Gaussian white noise. If the observed vector strictly 
follows the models represented by Eqs. (10) and (11), the system will acquire the optimal 
estimation of the state vector. Because of the nonlinear error of the state model and observation 
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model, the state estimation is sub-optimal. To get the optimal estimation, the error 
compensation is given as [21]: 

 𝑋𝑋�𝑡𝑡/𝑡𝑡
′ = 𝑋𝑋�𝑡𝑡/𝑡𝑡 + 𝑒𝑒𝑋𝑋�𝑡𝑡/𝑡𝑡 (20) 

where, 𝑋𝑋�𝑡𝑡/𝑡𝑡 denotes the sub-optimal state obtained by the KF, 𝑋𝑋�𝑡𝑡/𝑡𝑡
′  the optimal state, and 𝑒𝑒𝑋𝑋�𝑡𝑡/𝑡𝑡 

the state error of the KF arising from the model errors, process noises, and observation noises. 
𝑒𝑒𝑋𝑋�𝑡𝑡/𝑡𝑡 is output by the AVOA-ELM model. The inputs of the AVOA-ELM as follows: 

 𝑒𝑒𝐾𝐾�𝑡𝑡/𝑡𝑡−1 = 𝐾𝐾𝑡𝑡 − 𝐾𝐾𝑡𝑡−1   (21) 
 𝑒𝑒𝑋𝑋�𝑡𝑡/𝑡𝑡−1 = 𝑋𝑋�𝑡𝑡 − 𝑋𝑋�𝑡𝑡−1  (22) 
 𝑒𝑒𝑍𝑍�𝑡𝑡/𝑡𝑡−1 = 𝑍𝑍𝑡𝑡 − 𝐻𝐻𝑡𝑡𝑋𝑋�𝑡𝑡−1  (23) 

The three inputs correspond to model errors, process noises, and observation noises of KF, 
respectively. The proposed scheme is presented as Algorithm 1. In next the section, we present 
our design of a suitable controller to realize a novel IBVS based on FL-KF-AVOA-ELM. 

 

Fig. 1. AVOA-ELM frame. 

Algorithm 1: KF-AVOA-ELM for dynamic Jacobian estimation 
Step 1: Input the image Jacobian matrix at the last instant 𝑋𝑋�𝑡𝑡/𝑡𝑡

′ , covariance matrix 𝑃𝑃𝑡𝑡/𝑡𝑡, 
and Kalman gain 𝐾𝐾𝑡𝑡. 

Step 2: Obtain current observation value for image feature 𝑍𝑍𝑡𝑡+1. 
Step 3: Estimate the next state variable and covariance matrix: 

�
𝑋𝑋𝑡𝑡+1/𝑡𝑡 = 𝐸𝐸𝑋𝑋𝑡𝑡/𝑡𝑡

𝑃𝑃𝑡𝑡+1/𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡/𝑡𝑡𝐻𝐻𝑡𝑡 + 𝑄𝑄𝑡𝑡
  

Step 4: Calculate Kalman gain 𝐾𝐾𝑡𝑡+1 and update state variable 𝑋𝑋𝑡𝑡+1/𝑡𝑡+1 and covariance 
matrix 𝑃𝑃𝑡𝑡+1/𝑡𝑡+1. 
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�
𝐾𝐾𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1/𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 (𝐻𝐻𝑡𝑡+1𝑃𝑃𝑡𝑡+1/𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1)−1

𝑋𝑋𝑡𝑡+1/𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1/𝑡𝑡 + 𝐾𝐾𝑡𝑡+1(𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1𝑋𝑋𝑡𝑡+1/𝑡𝑡)
𝑃𝑃𝑡𝑡+1/𝑡𝑡+1 = (𝐸𝐸 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1/𝑡𝑡

  

Step 5: Output: 𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1/𝑡𝑡+1，𝐾𝐾𝑡𝑡+1，𝑃𝑃𝑡𝑡+1/𝑡𝑡+1. 
Step 6: Calculate the gain error 𝑒𝑒𝐾𝐾�𝑡𝑡+1/𝑡𝑡  via  𝑒𝑒𝐾𝐾�𝑡𝑡+1/𝑡𝑡 = 𝐾𝐾𝑡𝑡+1 − 𝐾𝐾𝑡𝑡. 
Step 7: Calculate the estimation error 𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡 via  𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡 = 𝑋𝑋�𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡. 
Step 8: Calculate the observation error 𝑒𝑒𝑍𝑍�𝑡𝑡+1/𝑡𝑡 via  𝑒𝑒𝑍𝑍�𝑡𝑡+1/𝑡𝑡 = 𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1𝑋𝑋�𝑡𝑡 
Step 9: Use the AVOA-ELM model proposed in Section 3.3 to calculate the KF state 

estimation error 𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1. 
Step 10: Calculate the optimal estimation image Jacobian matrix as 𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1

′ =
𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1 + 𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1. 

5. IBVS control scheme based on KF-AVOA-ELM and FL 
In this section, we present our design of an IBVS system based on the KF-AVOA-ELM 
algorithm without camera calibration, and we add an FL gain adaptive method based on image 
feature error. According to our analysis, we find that using KF-AVOA-ELM to predict the 
image Jacobian matrix is robust to the internal and external camera parameters and does not 
need to consider the positive kinematics model of the robotic arm. Hereafter, we describe the 
initialization of our IBVS system, FL gain adaptive controller, and the process of operation of 
our IBVS system. 

5.1 Initialization of proposed IBVS system 
It is important to design a controller for the IBVS system (corresponding to Eq. (8)), and the 
performance of the controller depends on 𝜆𝜆 and 𝐽𝐽𝑞𝑞

†, where 𝜆𝜆 denotes the gain and  𝐽𝐽𝑞𝑞
† ∈ ℜ𝑚𝑚×𝑛𝑛 

is the Moore–Penrose pseudo-inverse matrix. 𝐽𝐽𝑞𝑞 can be estimated by means of the KF-AVOA-
ELM algorithm. In KF-AVOA-ELM, the current image features are used to estimate the image 
Jacobian matrix. The features are given as follows: 

 𝑆𝑆𝑡𝑡 = [𝑠𝑠1,⋯ , 𝑠𝑠𝑘𝑘]𝑇𝑇 = [𝑢𝑢1, 𝑣𝑣1,⋯ ,𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘]2𝑘𝑘×1
𝑇𝑇     (24) 

Here, 𝑠𝑠𝑖𝑖 = [𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖] denotes an image feature point. From Eqs. (12) and (14), the state vector 
and observation matrix can be, respectively, expressed as 

 𝑋𝑋𝑡𝑡/𝑡𝑡 = [𝑗𝑗11, 𝑗𝑗12, . . . 𝑗𝑗𝑖𝑖𝑖𝑖](2𝑘𝑘×6)×1
𝑇𝑇     (25) 

 𝐻𝐻𝑡𝑡 = �
�̇�𝑞(𝑡𝑡)𝑇𝑇 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ �̇�𝑞(𝑡𝑡)𝑇𝑇

�
2𝑘𝑘×(6×2𝑘𝑘)

           (26) 

Here, 𝑗𝑗𝑖𝑖𝑖𝑖  denotes the i-th row and j-th column element of  𝐽𝐽𝑞𝑞(𝑡𝑡/𝑡𝑡). 
he initial state of the KF-AVOA-ELM algorithm strongly influences the robustness of the 

IBVS control strategy and the stability of the manipulator motion. In this study, we use the 
initialization method proposed in [34]. Firstly, we introduce the gripper m-steps linearly 
independent probe moving 𝑑𝑑𝑞𝑞1⋯𝑑𝑑𝑞𝑞𝑚𝑚  at the neighborhood of its initial pose. Next, we 
observe the changes of feature 𝑑𝑑𝑆𝑆1⋯𝑑𝑑𝑆𝑆𝑚𝑚 at m-steps. Finally, we set 𝐽𝐽𝑞𝑞′(0) as the initial state 
𝑋𝑋�(0) of the KF-AVOA-ELM. 

 𝑋𝑋�(0) = 𝐽𝐽𝑞𝑞′(0) = [𝑑𝑑𝑆𝑆1 ⋯𝑑𝑑𝑆𝑆𝑚𝑚][𝑑𝑑𝑞𝑞1 ⋯𝑑𝑑𝑞𝑞𝑚𝑚]−1         (27) 
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In Fig. 2, the KF-AVOA-ELM state estimation algorithm estimates the optimal value of the 
image Jacobian matrix in real-time. Subsequently, the velocity controller controls the 
manipulator motion to reduce the image feature error to a minimum and further drive the 
manipulator to move to the desired pose. From Eqs. (1) and (8), image error 𝑒𝑒𝑆𝑆(𝑡𝑡) and joint 
velocity �̇�𝑞(𝑡𝑡) at time t are given, respectively, as  

 𝑒𝑒(𝑡𝑡) = 𝑒𝑒𝑆𝑆(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆∗        (28) 
 �̇�𝑞(𝑡𝑡) = −𝜆𝜆𝐽𝐽𝑞𝑞+(𝑡𝑡)𝑒𝑒(𝑡𝑡)           (29) 

5.2 FL controller 
Fuzzy logic control is a controller based on rules with, a simple design and is easy to use. A 
fuzzy logic control system has good robustness and is suitable for nonlinear and time-varying 
systems. The estimation of the appropriate gain 𝜆𝜆 is very important for the controller, which 
can speed up the convergence rate of the IBVS system. In our approach, adaptive gain 𝜆𝜆 
depends on ∥ 𝑒𝑒 ∥, 𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡, and ∥ 𝑞𝑞 ∥. According to Eq. (29), when ∥ 𝑒𝑒 ∥ is large, we expect 
�̇�𝑞(𝑡𝑡) to be large. Thus, we choose ∥ 𝑒𝑒 ∥ as one of the inputs to the FL unit. We expect that the 
image feature error exhibits a smooth decline, and this is why we choose 𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡 as another 
input. Finally, according to the manipulator joint angle constraint, ∥ 𝑞𝑞 ∥ is selected as the third 
input to the FL unit. The FL unit shown in Fig. 2 is used for gain adaptation. Three factors, 
∥ 𝑒𝑒 ∥, 𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡, and ∥ 𝑞𝑞 ∥, are considered for our IBVS. The fuzzy rule base of ∥ 𝑒𝑒 ∥ and 
𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡 is the same as that of the classical PD controller for IBVS, and the rules of ∥ 𝑞𝑞 ∥ are 
based on a previous study [35]. The fuzzy reasoning rule base is generated by these rules. The 
four components of the FL unit, which include the classification method, input membership 
function, fuzzy reasoning rule base, and reasoning method, influence the output of the FL unit. 
The calculation process of 𝜆𝜆 is as follows: 

1. The input data ∥ 𝑒𝑒 ∥, 𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡, and ∥ 𝑞𝑞 ∥ are obtained. 
2. Fuzzy processing via membership functions is initiated.  
3. The fuzzy reasoning engine calculates the fuzzy output value according to the fuzzy 

reasoning rule base. 
4. Parameter 𝜆𝜆 is obtained by the Mamdani reasoning method and clarification processing. 
The regional centroid formula for Mamdani reasoning is given as follows: 

 𝜇𝜇𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑓𝑓𝑖𝑖(||𝑒𝑒||),𝑓𝑓𝑘𝑘(𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡),𝑓𝑓𝑙𝑙(||𝑞𝑞||)),∀𝑗𝑗,𝑘𝑘, 𝑙𝑙 ∈ {1. . . 𝑧𝑧}            (30) 

   𝜆𝜆 = ∑ 𝜇𝜇𝑖𝑖 ∫𝑓𝑓𝑖𝑖(𝜆𝜆)𝜆𝜆𝜆𝜆𝜆𝜆𝑛𝑛
𝑖𝑖=1
∑ 𝜇𝜇𝑖𝑖 ∫ 𝑓𝑓𝑖𝑖(𝜆𝜆)𝜆𝜆𝜆𝜆𝑛𝑛
𝑖𝑖=1

             (31) 
Here, 𝒇𝒇𝒋𝒋,𝒇𝒇𝒌𝒌,𝒇𝒇𝒍𝒍 are the input membership functions, 𝒇𝒇𝒊𝒊 is the output membership function. 

5.3 IBVS system process 
The main task of the IBVS system shown in Fig. 2 is to estimate the image Jacobian matrix, 
obtain adaptive gain, achieve the joint velocity control of the manipulator, and make the 
manipulator from the current pose to the desired pose. In this study, on the basis of the image 
Jacobian matrix online estimation scheme, we design an error compensation based on the 
AVOA-ELM for the image Jacobian matrix, which improves its estimation accuracy. In order 
to improve the IBVS convergence rate, we design an FL unit for gain adaptation. The inputs 
of the FL unit are ∥ 𝑒𝑒 ∥, 𝑑𝑑||𝑒𝑒||/𝑑𝑑𝑡𝑡, and ∥ 𝑞𝑞 ∥. A simple description of the IBVS based on FL-
KF-AVOA-ELM is given as follows. Firstly, according to Eq. (27), we obtain 𝐽𝐽𝑞𝑞′(0) and 
initialize the KF-AVOA-ELM. Secondly, we calculate the observation matrix 𝐻𝐻𝑡𝑡−1 via Eq. 
(26). Thirdly, we compute 𝐽𝐽𝑞𝑞(𝑡𝑡/𝑡𝑡) by means of the KF observation and update steps based on 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022                         2539 

𝐽𝐽𝑞𝑞′(𝑡𝑡 − 1/𝑡𝑡 − 1). Meanwhile, 𝑒𝑒𝐽𝐽𝑞𝑞(𝑡𝑡/𝑡𝑡) is predicted by the trained AVOA-ELM model, and the 
optimal image Jacobian matrix estimation  𝐽𝐽𝑞𝑞′(𝑡𝑡/𝑡𝑡) is obtained at time t. We compute adaptive 
gain 𝜆𝜆  via the FL unit according to the error feedback at time t-1. Finally, we drive the 
manipulator to the next pose by means of the joint velocity controller. The image feature can 
be obtained at time t. If the mean squared error (MSE) of the image feature error 𝐹𝐹(𝑡𝑡) =
1
2
𝑒𝑒𝑆𝑆(𝑡𝑡)𝑇𝑇𝑒𝑒𝑆𝑆(𝑡𝑡) = 0, the IBVS loop ends; otherwise, we estimate the image Jacobian matrix via 

KF-AVOA-ELM and move to the next iteration (𝑡𝑡 → 𝑡𝑡 + 1). 
 

 
Fig. 2. Schematic of proposed IBVS based on KF-AVOA-ELM and FL. 

6. Simulation results 

To assess the performance of the proposed IBVS system, we compare our approach with the 
IBVS based on KF [19], KFANN [21], FL-KF [20], BELM-SVSF-IBVS [6], and ELM-FL-
IBVS [18]. In this section, we describe our MATLAB-based experiments on these systems 
with a robot based on the EIH model. In our experiments, the Fuzzy Logic Toolbox, Robotics 
Toolbox, and Machine Vision Toolbox [36], are used in these systems. The 6-DOF robotic 
arm PUMA 560 (the parameters of the arm can be found in [37]) is selected as the robotic arm 
model for the IBVS experiment. The camera focal length is 8 mm, the resolution is 1024 × 
1024 px, the principal point is (512, 512), and the system control loop is 20Hz. In our study, 
all of the simulation experiments are based on the following assumptions: (1) no conversion 
between end effector frame and camera frame; (2) all points in the camera plane are not 
collinear. 

The input training set of the AVOA-ELM is obtained from the KF. We acquire gain error  
𝑒𝑒𝐾𝐾�𝑡𝑡+1/𝑡𝑡 , state estimation error  𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡, and observation error  𝑒𝑒𝑍𝑍�𝑡𝑡+1/𝑡𝑡 for every loop of the KF. 
The output training set  𝑒𝑒𝑋𝑋�𝑡𝑡+1/𝑡𝑡+1 is the difference of the desired state estimation and the KF 
state estimation. A total of 501 samples are trained for the AVOA-ELM model. The model has 
104 hidden nodes and 48 output nodes. The best validation performance with the RMSE of the 
training is 0.0028. It is seen that the error compensation model is effective. In addition, we use 
optimized ELM via differential evolution (DE), whale optimization algorithm (WOA), 
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grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), sine cosine 
algorithm (SCA) and AVOA to conduct experiments on this data set. We compare the RMSE 
of each ELM during the experiment and the number of iterations. The prediction accuracy of 
AVOA-ELM in the iterative process is superior to other algorithms that optimize ELM in Fig. 
3. 

 
Fig. 3. Iterative RMSE results of AVOAELM and other optimized ELM. 

 

In order to evaluate the IBVS system, we proposed three evaluation metrics are considered 
in this paper, including the convergence rate, end effector trajectory length, and error costs. 
The evaluation metrics are defined as follows: 

 𝑚𝑚𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑛𝑛≤∞

(||𝑒𝑒(𝑚𝑚)|| ≤ 𝑒𝑒𝑡𝑡ℎ𝑟𝑟)                 (35) 
 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 = ∑ ||𝑝𝑝𝑛𝑛 − 𝑝𝑝𝑛𝑛−1||𝑛𝑛𝑐𝑐

𝑛𝑛=2               (36) 
 𝑒𝑒𝐼𝐼𝐼𝐼𝐸𝐸 = ∑ ||𝑒𝑒(𝑚𝑚)||𝑛𝑛𝑐𝑐

𝑛𝑛=1                 (37) 
Here, n indicates the iteration number, 𝑒𝑒(𝑚𝑚) the image feature error of the nth iteration, where 
1 ≤ 𝑚𝑚 ≤ 𝑚𝑚𝑐𝑐 ,  𝑒𝑒𝑡𝑡ℎ𝑟𝑟  is the threshold for error convergence which is defined according to 
accuracy requirements and 𝑝𝑝𝑛𝑛 is the coordinate of the end effector at the nth iteration. The end 
effector trajectory length in 3D space is defined as 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐, while 𝑒𝑒𝐼𝐼𝐼𝐼𝐸𝐸 denotes the sum of each 
iteration error. Considering our IBVS system for real-time applications, we choose these three-
evaluation metrics. Based on the evaluation metric of the convergence rate, we can estimate 
the time taken by each IBVS system. Here, we note that in [38], evaluate VS system using 
span image area, track length, and curvature. The end-effector trajectory length is also a useful 
cost estimate. If the error cost is less, it is understood that the convergence rate of the feature 
error is fast. 

Case 1: Comparison with IBVS based on KF, KFANN and FL-KF  
The results of our method and three other algorithms are shown in Fig. 4. Uniformly 
distributed random noises are added in these IBVS systems based on KF, KFANN, FL-KF, 
and FL-KF-AVOA-ELM wherein the noise has zero mean and the variance is 0.1. From Fig. 
4, it is obvious that the FL-KF-AVOA-ELM IBVS system offers a faster convergence rate 
than the others. The end-effector trajectories are similar for all four IBVS systems. The 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 
values of the four IBVS systems are 0.2743, 0.2698, 0.2687, and 0.2619m, in the order listed. 
These values are very close to each other because the desired position is close to the initial 
position; however, our method also has a smaller 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 value. The error costs of the four IBVS 
systems are 2.11e + 4, 2.10e + 4, 1.08e + 4 and 8.21e + 3 in that order. A lower error cost 
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indicates that the proposed IBVS system tends to limit error oscillations. To illustrate the 
superior performance of the AVOA-ELM error compensation model, the results of FL-KF 
IBVS and FL-KF-AVOA-ELM IBVS are shown in Fig. 4 (c) and (d). The 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 values are 
0.2687 and 0.2619, the error costs are 1.08e + 4 and 8.21e + 3, and the 𝑚𝑚𝑐𝑐 values are 192 and 
92. The AVOA-ELM error compensation model improves three performance indexes of the 
IBVS control, reducing trajectory length and error cost, and further improving the convergence 
rate of the IBVS system. 

 
（a） 

 
（b） 

 
（c） 

 
（d） 

Fig. 4. Results for case 2. Rows 1 to 4 are IBVS based on (a) KF, (b) KFANN, (c) FL-KF, and (d) FL-
KF-AOVA-ELM, respectively. Columns 1, 2, and 3 correspond to (1) feature trajectory, (2) end 

effector trajectory, and (3) feature error, respectively. 
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Case 2:  Comparison with BELM-SVSF-IBVS and ELM-FL-IBVS  
To further verify the superior performance of our proposed method, in this case, we compare 
the proposed FL-KF-AVOA-ELM method with two recent methods, BELM-SVSF [6] and 
ELM-FL [18] respectively. We conducted comparative experiments under the same initial 
conditions (same feature points, desired features, and initial joint angles of the manipulator). 
The comparison results are shown in Table 1. From the Con.Rate, we can observe that BELM-
SVSF and FL-KF-AVOA-ELM obtain the same result (92), and ELM-FL obtains a relatively 
poor result (124).  From the Traj.Len, we can observe that BELM-SVSF obtains the best result 
(0.2581), FL-KF-AVOA-ELM obtains the suboptimal result (0.2654), and ELM-FL obtains a 
worst result (8.21e + 3).  From the Err.Costs, we can observe that BELM-SVSF obtains the 
best result (1.0218e + 4), FL-KF-AVOA-ELM obtains the suboptimal result (0.2654), and 
ELM-FL obtains a worst result (2.0518e + 4). Overall, our proposed method has the same or 
even better performance than the existing two methods. 

Table 1. Simulation results of BELM-SVSF-IBVS, ELM-FL-IBVS and FL-KF-AVOA-ELM  

 

Case 3: robustness of FL-KF-AVOA-ELM IBVS system 
In order to prove that our IBVS is more robust to uniformly distributed random noise, we 
conducted comparative experiments with the variance of 0.2, the variance of 0.4, and the 
introduction of colored noise respectively. Figs. 5-6 (sub-cases 1-3, respectively) show the 
results. The 𝑒𝑒𝑡𝑡ℎ𝑟𝑟 value is 0.5 in this case, and it is used to compare the robustness of our IBVS 
with respect to those of KF IBVS, KFANN IBVS, and FL-KF IBVS. 
In sub-case 1, we add uniformly distributed random noise with 0 mean and 0.2 variance to 
each system. Seen From Fig. 5 that the feature trajectory for each method is very similar, but 
our method yields better end-effector trajectories and feature error convergence rate. In the 
study, we calculated the mean of 50 experiments for each metric (Table 2). The 𝑚𝑚𝑐𝑐 values of 
each method are 432, 391, 208, and 96; it is obvious that the convergence of our IBVS is faster 
than those of the other three IBVS methods. The 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 values of the four methods are 0.2788, 
0.2681, 0.2727, and 0.2621 m in the order listed. These values are very close to each other 
because the expected position is close to the initial position. However, our method also reduces 
the length, which enables a reduction in manipulator motion power consumption. The error 
costs of the four methods are 2.12e + 4, 2.10e + 4, 1.09e + 4, and 8.21e + 3. The lower error 
cost of our approach indicates that our method exhibits lower error oscillations. This result 
also indicates that our method is more stable during the convergence process. 
 
 
 
 
 

 Con.Rate(n) Traj.Len (m) Err.Costs 

BELM-SVSF 92 0.2581  1.0218e + 4 
ELM-FL 124 0.2654  2.0518e + 4 

FL-KF-AVOA-ELM 92 0.2619 8.21e + 3 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 5. Results of variance = 0.2. Rows 1 to 4 illustrate the results obtained with IBVS based on (a) 

KF, (b) KFANN, (c) FL-KF, and (d) FL-KF-AOVA-ELM, respectively. Columns 1 to 3 correspond to 
(1) feature trajectory, (2) end effector trajectory, and (3) feature error, respectively. 
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(a) 

 
（b） 

 
(c) 

 
(d) 

Fig. 6. Results of variance = 0.4. Rows 1 to 4 depict the results obtained by means of IBVS based on 
(a) KF, (b) KFANN, (c) FL-KF, and (d) FL-KF-AVOA-ELM, respectively. Columns 1 to 3 

correspond to (1) feature trajectory, (2) end effector trajectory, and (3) feature error, respectively. 
 

When the variance of uniformly distributed random noise is increased to 0.4, the simulation 
results are given in Fig. 6 and the corresponding metrics are listed in Table 2. Upon comparing 
Fig. 5, and Fig. 6, we note that the feature trajectories of the different methods for different 
uniformly distributed random noises are very similar. However, when the disturbance noise 
changes, the end-effector trajectories of the other methods exhibit significant changes; that is, 
our proposed IBVS is more stable for uniformly distributed random noises. From Table 2, we 
can infer that our method is more stable in terms of metrics 𝑚𝑚𝑐𝑐 and 𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐. Our method also has 
the lowest error cost under different disturbance noise conditions. A lower error cost indicates 
that our method affords lower error oscillations. 
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To verify that the proposed IBVS based on FL-KF-AVOA-ELM has better performance 
even with the introduction of colored noise, we add colored noise to the system as random 
disturbance noise. The random noise introduced is as follows: 

 e(k)  =  x(k) + 0.5x(k − 1)            (38) 
where x(k) is the white noise has zero mean and the variance is 0.1. Table 2 lists the 
corresponding indicators. As shown in Table 2, we can observe that the proposed IBVS based 
on FL-KF-AVOA-ELM achieved the best results on all three evaluation metrics. 

Case 4: non coplanar point experiment 
To further illustrate the performance of the proposed algorithm, this section uses the non 
coplanar feature points in space for experiments, the actual coordinates of feature points are: 

 𝑃𝑃′ = �
0.25 0.25 −0.25 −0.25
−0.25 0.25 0.25 −0.25
1.50 1.48 1.50 1.52

�               (39) 

In this case, we add uniformly distributed random noise with a mean of 0 and a variance of 
0.1 to each IBVS method. Table 3 shows the measurement results of several IBVS methods. 
From Table 3, we can know that the three metrics of our method are 165, 0.2601, and 8.71e + 
3. The IBVS method proposed in this paper has the fastest convergence speed, the shortest 
trajectory length, and the smallest error cost. It is easy to know that our IBVS performs better 
than other comparison algorithms when non coplanar point in the target space. 

Table 2. Simulation results of FL-KF-AVOA-ELM and other algorithms with different noise. 

Scheme 
Metrics Con. Rate(n) Traj. Len (m) Err. Costs 

Noise 0.2 0.4 Colored  0.2 0.4 Colored  0.2 0.4 Colored  

KF 

 

432 414 393 0.2788 0.2805 0.2712 2.12
e+4 

2.12
e+4 

2.10 
e+4 

KFANN 391 398 396 0.2681 0.2792 0.2713 2.1 
e+4 

2.10
e+4 

2.11 
e+4 

FL-KF 208 224 156 0.2727 0.2750 0.2621 1.09
e+4 

1.10
e+4 

1.07 
e+4 

FL-KF-
AVOA-
ELM 

96 100 97 0.2621 0.2623 0.2634 8.21 
e+3 

8.27 
e+3 

8.60 
e+3 

 
Table 3. Simulation results of FL-KF-AVOA-ELM and other algorithms with non-coplanar points. 

 Con.Rate(n) Traj.Len(m) Err.Costs 
KF 484 0.2755 2.1095e+04 

KFANN 404 0.2699 2.1035e+04 
FL-KF 340 0.2710 2.09e+04 

FL-KF-AVOA-ELM 165 0.2601 8.71e+3 

Case 5: ablation experiment 
To verify the effectiveness of the proposed FL-KF-AVOA-ELM IBVS, we performed ablation 
experiment on the proposed method. We added uniformly distributed random noise with 0 
mean value and 0.1 variance into each IBVS method, and other conditions were set the same 
as in Case 1. The results of the ablation experiment are shown in Tabel 4. 
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First, we analyze whether the FL unit can really improve the convergence rate of IBVS. By 
comparing the second row with the third row in Table 4, we observed that Con.Rate can be 
reduced by 234 if we used the FL unit. It confirms that the FL unit can improve the 
convergence rate of IBVS. Second, we discuss the importance to use KF in IBVS. By 
comparing the first row with the third row in Table 4, we observed that Traj.Len can be 
reduced by 0.782 if we used KF. Third, we discuss the importance to use the ELM error 
compensation model in IBVS. By comparing row 3 with row 4 in Table 4, we observed that 
IBVS using the ELM error compensation model has a lower error cost (reduced by 79) and 
shorter trajectory length (reduced by 0.0032) than those not used. It indicates that the ELM 
error compensation model is crucial to our IBVS based on FL-KF-AVOA-ELM. Last but not 
least, we analyze whether AVOA can improve the performance of ELM, thus further enabling 
the IBVS to obtain better results in three indicators. By comparing row 4 with row 5 in Table 
4, we observed that all three evaluation metrics can be improved to some extent if we use 
AVOA to optimize the bias and input weight of ELM. Specifically, they are reduced by 21, 
0.0036, and 0.36e + 03, respectively. 

 
Table 4. Ablation of FL-KF-AVOA-ELM 

FL KF AVOA ELM Con.Rate(n) Traj.Len(m) Err.Costs 

√    91 0.3469 7.84e+03 
 √   426 0.2743 2.1095e+04 
√ √    192 0.2687 1.0772e+04 

√ √  √ 113 0.2655 8.57e+03 
√ √ √ √ 92 0.2619 8.21e+03 

7. Conclusion 
The proposed FL-KF-AVOA-ELM IBVS system does not require calibration of the camera. 
Moreover, our IBVS can solve three problems in the case of uncalibrated IBVS to a certain 
extent: the perturbation noises of the robot system, error of noise statistics, and slow 
convergence. First, the IBVS proposed by us uses KF to online estimate the image Jacobian 
matrix and uses an AVOA-ELM error compensation model to compensate for the suboptimal 
estimation of KF, so as to solve the problems of IBVS interference noise and noise statistical 
error. Then, the IBVS proposed by us uses the FL unit to adjust the control rate adaptively, so 
as to solve the problems of IBVS with slow convergence. Finally, we verify the superiority of 
our proposed method through simulation experiments, and we use three evaluation indicators 
to appraise the proposed FL-KF-AVOA-ELM IBVS. We compared classical IBVS, IBVS 
based on KF, KFANN, FL-KF, and ELM with proposed FL-KF-AVOA-ELM IBVS based on 
these metrics. The proposed FL-KF-AVOA-ELM IBVS can suitably address non-Gaussian 
perturbation error and improve the convergence rate. The KF method and our proposed method 
were simulated under different system dynamic disturbance noises. The proposed FL-KF-
AVOA-ELM IBVS has strong ability to resist interference noise. The ablation experiment 
proved that the proposed FL-KF-AVOA-ELM IBVS is scientific. 
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Appendix 
Here, we summarize and describe all the variables in Table 5. 
 

Table 5. Variables table. 
Variables Name Description  

𝑡𝑡 current iteration 
𝑚𝑚 feature number 
𝑚𝑚 feature dimension 
𝑎𝑎 internal parameters of the system 
𝜆𝜆 velocity gain 
�̇�𝑆 time derivative of image features 
𝐿𝐿𝑆𝑆 interaction matrix of 𝑆𝑆 
𝐿𝐿𝑒𝑒
†  Moore–Penrose pseudo inverse 

matrix of 𝐿𝐿𝑒𝑒 
�̇�𝜉 velocity of camera 

𝑒𝑒𝑆𝑆(𝑡𝑡) error of current iteration 
�̇�𝑒𝑆𝑆(𝑡𝑡) time derivative of the error of current 

iteration 
𝑝𝑝𝑖𝑖(𝑡𝑡) coordinates of n characteristic points, 

where i=1, 2, 3, ..., n 
𝑆𝑆(𝑝𝑝𝑖𝑖(𝑡𝑡),𝑎𝑎) current feature 

𝑆𝑆∗ expected feature 
𝐽𝐽(𝑞𝑞) robot Jacobian matrix 
𝐽𝐽𝑞𝑞 image Jacobian matrix 
 𝐽𝐽𝑞𝑞
†  Moore–Penrose pseudo inverse 

matrix of 𝐽𝐽𝑞𝑞. 
𝑞𝑞 joint angle vector of the m degrees 

of freedom (DOFs) manipulator 
�̇�𝑞 joint velocity vector 

Q(t) n by m covariance matrix 
R(t) m covariance matrix 
𝑊𝑊𝑡𝑡 white noise with zero mean and 

covariance Q(t) 
𝑉𝑉𝑡𝑡 white noise with zero mean and 

covariance R(t) 
𝑋𝑋𝑡𝑡/𝑡𝑡 state vector of robot system 
 𝑋𝑋�𝑡𝑡/𝑡𝑡  sub-optimal state obtained by KF 
𝑋𝑋�𝑡𝑡/𝑡𝑡
′  optimal state obtained by KF 

𝑒𝑒𝑋𝑋�𝑡𝑡/𝑡𝑡 estimation error of KF arising from 
model errors, process noises, and 
observation noises 

𝑒𝑒𝐾𝐾�𝑡𝑡+1/𝑡𝑡    gain error of KF 
𝑒𝑒𝑍𝑍�𝑡𝑡+1/𝑡𝑡  observation error of KF 
 𝑍𝑍𝑡𝑡+1   observation vector at current instant 
𝐻𝐻𝑡𝑡+1 state observation matrix 
𝑃𝑃𝑡𝑡/𝑡𝑡 state estimation covariance 
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𝐾𝐾𝑡𝑡+1 Kalman gain 
𝛽𝛽 hidden-layer weight vector between 

L hidden-layer nodes and output 
nodes. 

𝑤𝑤 hidden-layer weight 
𝑏𝑏 hidden-layer bias 

ℎ(𝑤𝑤, 𝑏𝑏, 𝑥𝑥) relationship function between 
hidden-layer input and output. 

𝐻𝐻† Moore–Penrose generalized inverse 
matrix of 𝐻𝐻 

�̂�𝛽  solution of 𝐻𝐻𝛽𝛽 = 𝑇𝑇 determined via 
a least-squares method 

𝑚𝑚𝑐𝑐 minimum iteration of image feature 
error less than 𝑒𝑒𝑡𝑡ℎ𝑟𝑟  

𝑙𝑙𝑒𝑒𝑚𝑚𝑐𝑐 end effector trajectory length in 3D 
space  

𝑒𝑒𝐼𝐼𝐼𝐼𝐸𝐸  sum of each iteration error 
𝑒𝑒𝑡𝑡ℎ𝑟𝑟  threshold for error convergence 

which is defined according to 
accuracy requirements 
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